We will have a mirror site at http://nunezreport.wordpress.com in case we are censored, Please save the link

Tuesday, May 19, 2015

Scientists have successfully coaxed old brain processes to become young again



Image result for Scientists have successfully coaxed old brain processes to become young again


Scientists, led by an Indian-origin researcher, have successfully coaxed old brain processes to become young again, paving the way for new treatments for brain disorders such as autism and schizophrenia.

University of California-Irvine neurobiologist Sunil Gandhi and colleagues re-created a critical juvenile period in the brains of adult mice, reactivating brain plasticity — the rapid and robust changes in neural pathways and synapses as a result of learning and experience. They achieved this by transplanting a certain type of embryonic neuron into the brains of adult mice.

Transplanted neurons express GABA, a chief inhibitory neurotransmitter that aids in motor control, vision and many other cortical functions.

Much like older muscles lose their youthful flexibility, older brains lose plasticity. But in the study, the transplanted GABA neurons created a new period of heightened plasticity that allowed for vigorous rewiring of the adult brain. In a sense, old brain processes became young again.

In early life, normal visual experience is crucial to properly wire connections in the visual system. Impaired vision during this time leads to a long-lasting visual deficit called amblyopia.

In an attempt to restore normal sight, the researchers transplanted GABA neurons into the visual cortex of adult amblyopic mice.

"Several weeks after transplantation, when the donor animal's visual system would be going through its critical period, the amblyopic mice started to see with normal visual acuity," said Melissa Davis, a postdoctoral fellow and lead author of the study.

These results raise hopes that GABA neuron transplantation might have future clinical applications. This line of research is also likely to shed light on the basic brain mechanisms that create critical periods.

"These experiments make clear that developmental mechanisms located within these GABA cells control the timing of the critical period," said Gandhi, an assistant professor of neurobiology & behaviour.

The study was published in the journal Neuron

Credit to The Tribune




No comments:

Post a Comment